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ABSTRACT

In this paper, the effects of an electron beamonX-pinch-produced spectra of L-shellMoplasma are investigated for thefirst timeby
principal component analysis (PCA); this analysis is compared with that of line ratio diagnostics. A spectral database for PCA
extraction is arranged using a non-Local Thermodynamic Equilibrium (non-LTE) collisional radiative L-shell Mo model. PC vector
spectra of L-shell Mo, including F, Ne, Na and Mg-like transitions are studied to investigate the polarization types of these
transitions. PC1 vector spectra of F, Ne, Na and Mg-like transitions result in linear polarization of Stokes Q profiles. Besides, PC2
vector spectra show linear polarization of Stokes U profiles of 2p53s of Ne-like transitions which are known as responsive to a
magneticfield [Träbert, Beiersdorfer, andCrespoLópez-Urrutia, Nucl. InstrumMethods Phys. Res., Sect. B 408, 107–109 (2017)]. A 3D
representation of PCA coefficients demonstrates that addition of an electron beam to the non-LTE model generates quantized,
collective clusters which are translations of each other that follow V-shaped cascade trajectories, except for the case f = 0.0. The
extracted principal coefficients are used as a database for an Artificial Neural Network (ANN) to estimate the plasma electron
temperature, density and beam fractions of the time-integrated, spatially resolved L-shellMoX-pinch plasma spectrum. PCA-based
ANNsprovide an advantage in reducing the network topology, with amore efficient backpropagation supervised learning algorithm.
Themodeled plasma electron temperature is about Te; 660 eV and density ne = 1 × 1020 cm23, in the presence of the fraction of the
beams with f ; 0.1 and centered energy of 5 keV.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5081676

I. INTRODUCTION

X-pinch discharge experiments at laboratory or table top
scales generate localized, high-energy density plasmas, or so-
called hot spots, with sizes 1024 to 1021 cm, temperatures 0.1 to
1 keVandelectrondensities; 1018 to 1023 cm3. Suprathermal hot
electrons with anisotropic velocity distributions are the typical
by-product of X-pinch produced plasmas. Hot electrons are
diagnosed by different experimental and computational
methods, some of which are X-ray emission, electron brems-
strahlung andKaemission, spectropolarimetry andparticle-in-
cellmodelling.2–10Polarization spectroscopy is known as one of

themainmethods todiagnose the state of anisotropy. Besides, a
collisional radiative model with a non-Maxwellian electron
distribution is another method to diagnose hot electrons in
emission spectra.11On theother hand, Yilmaz et al. showed that
the application of principal component analysis (PCA) on the
collisional radiative model of resonant transitions of L-shell Cu
spectra results in linear Stokes profiles of polarization of Ne-
like copper spectra. Stokes polarizations set parameters that
can describe the degree and the shape of the polarization
completely, and they are found in many applications of as-
trophysical spectra.12,13
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PCA is one of the pattern recognition techniques that is
used for reducing the dimension of a dataset of high dimension,
while keeping a great amount of its variability. So, it makes it
easier to visualize a dataset. It has been used in many fields like
robotics, medicine, remote sensing and so on. PCA has also
many applications in spectroscopy, especially in unmixing
species and decomposing overlapped spectral lines of UV-
VIS-NIR spectroscopy, which is critical for spectral finger-
printing.12,13 An artificial neural network (ANN), in simple
terms, is a well-known machine learning algorithm that uses
examples to extract rules. An ANN is composed of highly
interconnected layers that process given examples. In our
study, PCA coefficients (obtained as a result of PCA analysis and
corresponding plasma electron temperature, density and beam
fractions from a representative, time-integrated and spatially
resolved L-shell Mo X-pinch plasma spectrum) are used as
training examples of ANN.14

In this work, the effects of the electron beam on the non-
LTE, collisional radiative model of L-shell Mo spectra, obtained
by PCA, have been investigated for a typical X-pinch spectrum
(shot XP_633), recorded on a compact low-energy device. The
plasma electron temperature, density and beam fraction were
extracted using a PCA-based ANN. The paper is organized as
follows: Section II summarizes the experiments, and Sec. III
studies the effect of the electron beams on the non-LTEK-shell
spectra by means of line ratio diagnostics and PCA. Section IV
presents the modeling of the experimental data by PCA-based
ANN, and the conclusions are given in Sec. V.

II. EXPERIMENTS

One can find the details of the X-pinch experiments of Mo
shots in the work of Aranchuk and Larour. Briefly, the X-ray
spectrum of Mo (shot XP_633) was generated by a discharge
current of 250 kA with a rise time of 200 ns and a voltage of
40 kV. 25mmofMowireswere placed in the anode-cathode gap
of 9mm, in the formof anX shape to generate point-like plasma
in the vicinity of the cross point of the wires. Spectra in the
region of 4.3 Å – 5.2 Å were recorded through two X-ray
spectrometers.15,16

A wider spectral region was registered by a convex mica
crystal with a curvature of radius, 2d = 1.984 Å. The distance
from the plasma was kept at 220 mm to achieve an effective
dispersion of 25 eV/mm at the first order around 1 keV on a
cylindrically bent film (R = 28 mm). A narrower spectral region
was registered by a flat crystal spectrograph. Specifically, KAP
(2d = 2.664 Å) and PET (2d = 0.874 Å) were used for the Mo
experiments. The distance of the crystal from the plasma was
380mmand the crystal-film onewas 40mm. The spectrometer
was set up to record plasma emission of single shot, with
l/Dl = 5000 andDmm=40mmspectral and spatial resolutions,
correspondingly.15The time-integrated spectrawere recorded
on Kodak Direct Exposure film (DEF). The filtered pinholes
(R = 30 mm) on the entrance window of the spectrometer were
used to obtain the plasma sizes. The positions of the lines were
estimated using the geometry for each shot. Then, a consistent
set of lineswas compared for identificationwith the database of

spectra, measured in pulsed, hot plasma experiments with X-
pinches and Z-pinches.15,16

A typical, axially resolved, X-ray spectrum of Mo (shot
XP_633) and its corresponding pinhole image is given in Fig. 1.
The F-like F1, Ne-like 3C, 3D, 3F and 3G, and the Na-like Na1 and
Na2 transitions arewell resolved in the spectrum. The observed
Lb transition is expected due to suprathermal electron beam
effects in plasma.15,16 In Fig. 2, electrical (voltage, B-dot probe
signal, current as numerically integrated from B-dot) and X-ray
diode (XRD) records have been illustrated. Figure 2 shows that
the main X-ray burst occurs around 180 ns, and that the
magnetic field varies significantly after the main burst.

III. ELECTRON BEAM EFFECTS ON L-SHELL
Mo SPECTRA

A. Non-LTE model of L-shell molybdenum

Thedatabase formodeling the plasma electron density and
temperature of Mo (shot XP_633) was generated by using a
previously developed L-shell, non-LTE collisional radiative
model. The energy level structures, spontaneous and collisional
rates, collisional and photoionization cross-section calcula-
tions were performed using the HULLAC code.17 The L-shell
Momodel includes detailed structures forO-like toMg-likeMo
ions.16Themodel uses ahybrid electrondistribution function, F
(e) = (12 f)pFmaxwellian 1 fpFnonmaxwellian, to calculate the rates of
collisional processes by integrating cross sections over the
electrondistribution function. In thiswork, the fraction, f, of hot
electrons was described by a Gaussian distribution, centered at
the characteristic energy E0 = 5 keV.12,13 Voigt profiles with a
resolution d = 500 were used to fit line broadening of the ex-
perimental spectra.16

B. PCA analysis of L-shell Mo synthetic database

It has been already shown that the ratiosMg1/Na1, F1/Mg1
can be used as electron temperature diagnostics of L-shell Mo
plasmas and vice versa.18,19 In this work, we used the line ratio
(Na113D)/Mg1 as the plasma electron temperature diagnostic
at moderate electron densities. Figure 3 shows that addition of
the beam fraction fixes this ratio, especially when electron
temperatures (Te) are less than 400 eV, and the plots tend to
have a hollow form as the beam fraction increases.

Yilmaz et al.13 described that PCA also can be used as an
alternative to line ratio diagnostics for investigating the effects
of electron beams on each line dependence and for estimating
plasma parameters.12,13 PCA is a dimension-reduction tech-
nique for large databases while retaining most of the in-
formation. The main goal of PCA is to diagnose the hidden
structures of the database by linearly transforming the original
variables into new, uncorrelated variables called principal
components (PC). Principal components with the greatest ei-
genvalues correspond to the maximum variance. Principal
components are the eigenvectors of the covariance matrix of
the data associated with the largest eigenvalues.20,21
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Principal Components (|PC1æ, |PC2æ, |PC3æ, etc.) are used
to form an orthonormal basis of the new vector space with a
smaller dimension. Each original data point is projected onto
this space, and new coordinates are obtained by taking
the dot product of the original data and each principal
component.

For i = 1, 2,…,M, letGi be the vectors in adata set of sizeN× 1.
The mean of Gi’s is

m ¼ 1
M�

M

i¼1
Gi:

Now subtract the mean m from each of Gi and define

Fi ¼ Gi 2m:

The covariance matrix C is

FIG. 1. Top: Pinhole image. Bottom: Time integrated spectra of plasma of Mo XP_633.

FIG. 2. Close-up of the electrical and
photonic records 400 ns around the
time of pinching (shot XP_633). The
electrical records (voltage, B-dot probe
signal, current as numerically inte-
grated from B-dot). X-ray signal is
figured out by the XRD signal in volts
(right scale).
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C ¼ 1
M�

M

i¼1
FiF

t
i ¼

1
M

AAt

where superscript t means transpose and A = [F1,F2,…,FM]. C
is an N × N symmetric matrix. It is diagnosable and has N
nonnegative eigenvalues and eigenvectors. The eigenvector
corresponding to the largest eigenvalue is called the first
principal component (|PC1æ), and the second and third largest
ones are called the second (|PC2æ) and the third (|PC3æ) principal
components, respectively. If a vector (|væ) is projected into the
space spanned by |PC1æ, |PC2æ and |PC3æ then we have

ProjÆjPC1æ;jPC2æ;jPC3ææjvæ ¼ w1jPC1æ1w2jPC2æ1w3jPC3æ:

The coefficients w1, w2 and w3 are called the weights of |PC1æ,
|PC2æ and |PC3æ in |væ and calculated as

w1 ¼ jvæ$ðjPC1æÞt (1)

w2 ¼ jvæ$ðjPC2æÞt; (2)

w3 ¼ jvæ$ðjPC3æÞt; (3)

where $ is the dot product in Euclidean space (RN). Since
|PC1æ, |PC2æ and |PC3æ are the most dominant three eigen-
vectors, the vector v(w1|PC1æ1w2|PC2æ1w2|PC2æ) has less
significance, and it can be ignored. Therefore, it is enough
to work on the three-dimensional space spanned by |PC1æ,
|PC2æ and |PC3æ. In this work, the PCA is applied to the
data obtained for different electron beam fractions
separately. Four densities are considered as a training
set for a fraction. Each density consists of spectra for
the temperatures 200, 220, 240,…, 900 eV (36 different
temperatures).

FIG. 3. Dependence of the line ratios of
(Na113D)/Mg1 onplasmaelectron tem-
peratures for (a) ne = 1 × 10

20 cm23 and
(b) ne = 1 × 1021 cm23.

FIG. 4. Mean. |PC1æ and |PC2æ spectra without beam
fraction, f = 0.0 and with beam fraction, f = 0.1.
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One can measure the state of polarization of the light in
terms of Stokes parameters. Stokes parameters of I, Q, U and V
are used to describe the polarization type of the light. Stokes I
represents unpolarized light, Q and U represent linearly polar-
ized light, andV representscircularly polarized light.22SincePCA
can represent the database in a scalar and vectorial manner, one
caneasilyobservethedirectionof thechangeof thespectral lines
in a vectorial representation of the spectral database.12 Paletou
showed that PCA is an efficient tool to extract Stokes parameters
from polarized stellar data.23

Figure 4 illustrates the vector representations (|PC1æ and
|PC2æ) of L-shell Mo spectra. Mean spectra represent the
unpolarized (Stokes I) spectra. |PC1æ spectra show that ad-
dition of electron beams results in linear polarization of
Stokes Q profiles for the considered transitions of F, Ne, Na
and Mg-like L-shell Mo. |PC2æ spectra, orthogonal to |PC1æ
spectra, show that the 3F and 3G of Ne-like Mo have direction
changes from positive to negative, and Mg2-like Mo has a
direction change fromnegative to positive, which is described
as Stokes U. The 3F and 3G of Ne transitions have already been
recognized as sensitive to magnetic fields.1 Our data in B-dot
signals in Fig. 2 clearly show a significant variation of the

induced magnetic fields after the main X-ray burst, and it is
known that hot electron flux supports self-generated mag-
netic fields.24,25 For these reasons, |PC2æ vector spectra are
expected to represent propagation of the photons along the
induced magnetic field.

Figure 5 shows the |PC1æ, |PC2æ, |PC3æ coordinates of
original data for different fractions at electron density
ne = 1 × 1020 cm23. In particular, each cluster corresponds to a
fraction of electron beams. The clusters of the fractions (except
for f = 0.0) are the translations of each other, and they form
V-shaped cascade trajectories. This shows that the addition of
electron beams stimulates collective behavior. Such V-shapes
are observed in coronal bursts and are described by the two-
stream instability due to the collective and hybrid nature of
photon and plasmon interactions.12 Gedik et al. experimentally
illustrated the periodic V-shape like Dirac cones which were
due to the interaction between photons and free electrons
(plasmons) of the Floquet-Bloch states of topological insulators.
Furthermore, these free electrons selectively scattered be-
tween Floquet-Bloch and Volkov states.23,24

Figure 6 shows the electron temperature dependence of
PC1 coefficients for the considered electron densities. As the

FIG. 5. 3D representation of |PC1æ, |PC2æ, and |PC3æ
coefficients for different electron beam fractions (a)
f = 0.0, (b) 0.1, and (c) 0.2 at an electron density of
ne = 1 × 1020 cm23.

FIG. 6. The correspondence of |PC1æ
coefficients and electron tempera-
tures at classified electron densities
of (a) ne = 1 × 1020 cm23 and (b)
ne = 1 × 10

21 cm23 and beam fractions.
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fraction of the beam increases, the PC1 coefficients tend to have
the shape of the curve for fractions f = 0.05 and f = 0.1. Such a
tendency is in agreement with the line ratio diagnostics
(Na113D)/Mg1. However, addition of the beam fraction line-
arizes the PC1 coefficients for f = 0.15 and f = 0.2.

IV. PCA BASED ANNMODELING OF Mo XP_633

The ANN is a promising alternative method for classifi-
cation, prediction and forecasting (nonlinear processing
property).26 It is a powerful tool that can train given data to
perform various tasks such as boundary and feature extraction,
information retrieval and many other pattern recognition
problems.27,28 The feed-forward neural networks (FFNNs)
approach is a suitable structure for nonlinear separable input
data. In the FFNNmodel, the neurons are organized in the form
of layers. The neurons in a layer get input from the previous
layer and feed their output to the next layer as shown in Fig. 7. In
this type of network, connections between the neurons, in the
same or previous layers, are not permitted. Learning processes
in FFNNs occur through back-propagation, which requires
providing pairs of input and target vectors.

In this study, a three-layer feed-forward neural network
with an error back-propagation algorithm was used for our
purpose. We employed a PCA-based neural network to obtain
the plasma parameters of the experimental spectra of X-Pinch,
L-shell Mo spectra. In the back-propagation, a supervised
learning algorithm with sigmoid transfer type function, as the
activation function, was chosen in the back-propagation su-
pervised learning algorithm. The activation function is used to
transform the activation level of a unit (nodes or neuron) into an
output signal.29The gradient descentwith amomentumweight
and bias learning function is used in the back-propagation
algorithm. The momentum constant was set to 0.95, while
the learning rate was set to 0.01. The mean square error (MSE)
was set to 1.5 × 1025, while the number of epochswas selected as
2000.

Theprincipal coefficientsof theexperimental spectrawere
computed by taking the dot product of principal components
and the difference between this spectrum and the mean of the

original 144 spectra. Then, the first principle component of
experimental spectra, tested by the ANN to estimate the plasma
electron temperature, and thePCA-basedANNgaveTe = 659.89
eV–660 eV and ne = 1 × 1020 cm23 and f = 0.1 of hot electrons. The
experimental spectrumofXP_633 and itsmodeling by thePCA-
based ANN and non-LTEmodeling with the same parameters is
illustrated in Figs. 8(a) and 8(b), respectively. It was found that
the PCA-based ANN spectrum is better at estimating the Na1
and Na2-like lines. However, it overestimated the 3F and 3G
lines when compared with the case of non-LTE modeling. The
mean square errors between the experimental spectrum and
the PCA-based ANN, and the experimental spectrum and the
non-LTE modeling are 0.003 and 0.002, respectively.

V. CONCLUSION

PCA can be used for the data classification of a non-LTE
collisional radiative L-shell Mo model, and each spectrum can
be characterized by the dominant PC coefficients. The com-
parisonof PCAwith line ratio diagnostics shows that PCAcanbe
used as an alternative plasma diagnostic of L-shell Mo spectra.
The plot of |PC1æ, |PC2æ and |PC3æ coefficients (at electron
density ne = 1 × 1020 cm23) clearly shows that addition of an
electron beam to the spectral model generates uniform clus-
ters. F, Ne, Na and Mg-like L-shell Mo vector spectra tend to
have linear polarization of Stokes Profiles in the presence of
electron beams, which has also been observed with the Ne-like
Cu L-shell spectra as described in our previous works.
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7O. Renner, M. Šmı́d, D. Batani, and L. Antonelli, “Suprathermal electron
production in laser-irradiated Cu targets characterized by combined
methods of x-ray imaging and spectroscopy,”PlasmaPhys. Controlled Fusion
58(7), 075007 (2016).
8A. L. Meadowcroft and R. D. Edwards, “High-energy bremsstrahlung di-
agnostics to characterize hot-electron production in short-pulse laser-
plasma experiments,” IEEE Trans. Plasma Sci. 40(8), 1992–2001 (2012).
9A. J. Kemp, Y. Sentoku, and M. Tabak, “Hot-electron energy coupling in
ultraintense laser-matter interaction,” Phys. Rev. Lett. 101(7), 075004 (2008).
10E. O. Baronova, J. Larour, F. B. Rosmej, and F. Y. Khattak, “Polarization
analysis of CuXX-lines emitted from X-pinch,” J. Phys.: Conf. Ser. 653(1),
012145 (2015).
11J. Abdallah, A. Y. Faenov,D.Hammer, S. A. Pikuz,G.Csanak, andR.E.H.Clark,
“Electron beam effects on the spectroscopy of satellite lines in aluminum X-
pinch experiments,” Phys. Scr. 53(6), 705 (1996).
12M. F. Yilmaz, Y. Danisman, J. Larour, and L. E. Aranchuk, “PC spectra analysis
of L-shell copper X-pinch plasma produced by the compact generator of
Ecole polytechnique,” AIP Conf. Proc. 1811(1), 060002 (2017).
13M. F. Yilmaz, Y. Danisman, J. Larour, and L. Aranchuk, “Principal component
analysis of electron beams generated in K-shell aluminum X-pinch plasma
produced by a compact LC-generator,” High Energy Density Phys. 15, 43–48
(2015).
14J. Larour, L. E. Aranchuk, Y.Danisman,A. Eleyan, andM.F. Yilmaz, “Modeling
of the L-shell copper X-pinch plasma produced by the compact generator of
Ecole polytechnique using pattern recognition,” Phys. Plasmas 23(3), 033115
(2016).
15L. E. Aranchuk and J. Larour, “Submicrosecond X-pinch as a source of
point-like radiation and multi-charged hot plasma,” in 2004 International
Conference on High-Power Particle Beams (BEAMS 2004) (IEEE, 2004),
pp. 750–753.
16M.F. Yilmaz, A. Eleyan, L. E. Aranchuk, and J. Larour, “Spectroscopic analysis
of X-pinch plasma produced on the compact LC-generator of Ecole poly-
technique using artificial neural networks,”High Energy Density Phys. 12, 1–4
(2014).

17A. Bar-Shalom,M. Klapisch, and J. Oreg, “HULLAC, an integrated computer
package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Trans-
fer 71(2-6), 169–188 (2001).
18M. F. Yilmaz, “Radiative properties of L-shell Mo and K-shell Al plasmas
from planar and cylindrical wire arrays imploded at 1 MA Z-pinch generator,”
Ph.D. dissertation (University of Nevada, Reno, 2009).
19M. F. Yilmaz, A. S. Safronova, V. L. Kantsyrev, A. A. Esaulov, K.M.Williamson,
G. C. Osborne, and N. D. Ouart, “Spectroscopic features of implosions of Mo
single-and double-planar wire arrays produced on the 1MA Z-pinch gener-
ator,” J. Quant. Spectrosc. Radiat. Transfer 109(17), 2877–2890 (2008).
20I. T. Jollie, Principal Component Analysis, Springer Series in Statistics
(Springer, New York, 2002), p. 489.
21G. H. Dunteman, Principal Components Analysis (Sage, 1989), Vol. 69.
22G. A. Wade et al., “Spectropolarimetric measurements of magnetic Ap and
Bp stars in all four Stokes parameters,” Mon. Not. R. Astron. Soc. 313(4),
823–850 (2000).
23F. Paletou, “A critical evaluation of the principal component analysis de-
tection of polarized signatures using real stellar data,”Astron. Astrophys. 544,
A4 (2012).
24W. Syed, D. A. Hammer, M. Lipson, and R. B. Van Dover, “Magnetic field
measurements inwire-array Z-pinches andXpinches,”AIPConf. Proc.808(1),
315–318 (2006).
25Z. Shen, X. Chuang, Z. Xin-Lei, Z. Ran, L. Hai-Yun, Z. Xiao-Bing, and S. Xiao-
Jian, “Determining the resistance of X-pinch plasma,” Chin. Phys. B 22(4),
045205 (2013).
26R. Kizilaslan and B. Karlik, “Comparison neural networks models for short
term forecasting of natural gas consumption in Istanbul,” in The First In-
ternational Conference on the Applications of Digital Information and Web
Technologies. 2-4 August, 2008, Ostrava, Czech Republic (IEEE, 2008), Vol. 1-2,
pp. 455–460.
27B. Karlik, E. Ozkaya, S. Aydin, andM. Pakdemirli, “Vibration of a beam-mass
system using artificial neural networks,” Comput. Struct. 69, 339–347 (1998).
28B. Karlik and S. Aydin, “An improved approach to the solution of inverse
kinematics problem for robotmanipulator,”Eng. Appl. Artif. Intell. 13, 159–164
(2000).
29B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized MLP architectures of neural networks,” Int.
J. Artif. Intell. Expert Syst. (IJAE) 1(4), 111–122 (2011).

Matter Radiat. Extremes 4, 027401 (2019); doi: 10.1063/1.5081676 4, 027401-7

©Author(s) 2019

Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

https://doi.org/10.1088/0741-3335/58/7/075007
https://doi.org/10.1109/tps.2012.2201175
https://doi.org/10.1103/physrevlett.101.075004
https://doi.org/10.1088/1742-6596/653/1/012145
https://doi.org/10.1088/0031-8949/53/6/011
https://doi.org/10.1063/1.4975726
https://doi.org/10.1016/j.hedp.2015.03.010
https://doi.org/10.1063/1.4943874
https://doi.org/10.1016/j.hedp.2014.04.001
https://doi.org/10.1016/s0022-4073(01)00066-8
https://doi.org/10.1016/s0022-4073(01)00066-8
https://doi.org/10.1016/j.jqsrt.2008.07.011
https://doi.org/10.1046/j.1365-8711.2000.03273.x
https://doi.org/10.1051/0004-6361/201219399
https://doi.org/10.1063/1.2159379
https://doi.org/10.1088/1674-1056/22/4/045205
https://doi.org/10.1016/s0045-7949(98)00126-6
https://doi.org/10.1016/s0952-1976(99)00050-0
https://doi.org/10.1063/1.5081676
https://scitation.org/journal/mre

